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Electromechanical Properties of Bones 
 

Abstract 

 

Bones are an integral part of the human body that exhibit piezoelectric properties, 

meaning that when stress is applied to the bone, the bone produces a current within itself. This 

is known as the piezoelectric effect. Material that are piezoelectric can similarly exhibit the 

reverse piezoelectric effect, meaning that when a current is applied, the material compresses on 

itself. This property has many applications such as applying a current to a fractured bone to 

promote compression of the bone to allow it to heal faster. However, too much of a current will 

destroy the tissue of the bone, thus killing the cells. The goal of our research is to determine the 

electrical conductivity of the human bone to establish the maximum amount of current that can 

be applied before the bone tissue begins to become damaged. Our model will expand upon that 

which is described by R. Casas and I. Sevostianov by considering the interaction between the 

Haversian and Volkmann canals of bones and their effect on the overall conductivity of the 

bone.  

 

Introduction 

 

It is well known by everyone that bones are a crucial component to the human body. 

Bones provide stability of structure so that humans may stand upright and bones also provide 

protection for vital organs such as the brain, lungs and heart. Red and white blood cells are also 

made within bone marrow so bones can be seen to house important physiological processes as 

well. Though the importance of bones is well known, intensive study on bone structure, also 

known as osteology, only began within the last century. These studies led to the discovery of 

many intriguing properties which commands further exploration.       

One of the properties discovered, was that bones are dielectric. This implies that they 

themselves are semi-conductive. In addition, they are anisotropic, so not only are bones 

conductive, they conduct differently depending on the direction of the flow of the current through 

the bone. The major find was that bones are piezoelectric materials. This piezoelectric property 

implies that a voltage could be applied to the bone and the bone itself would compress. It is also 

well known that if a bone is fractured, compressing the fracture shortens the healing time. So in 

theory, if there were many small fractures in the bone, a voltage could be applied to the bones 

which would then cause the bone to compress and allow the fractures to heal quicker. However, 

since bones are semi-conductive this means that if a voltage is applied to a bone, a current will 

be produced which could cause damage to tissue inside the bone which would effectively kill the 

bone and prevent it from healing. Therefore, the motivation behind the model is to accurately 

describe the flow of any current in the bone so that the exploitation of the piezoelectric property 

can be safely applied as a treatment.                                                            



Before modeling the flow of current, certain physical properties of the bone needs to be 

addressed. The structure of bone is quite complicated and can be seen as a network of different 

parts all intertwined in a specific manner. Since the goal is to model the total conductivity of a 

bone, the structure of the bone can be simplified as a sum of three different parts: Haversian 

canals, Volkmann canals, and the rest of the bone which will be referred to as the bone matrix. 

The Haversian canals run parallel to the length of the bone, are an average 5 mm in length, and 

are approximately 50 microns in diameter. Volkmann canals connect Haversian canals together 

and they are orientated in the perpendicular direction of the Haversian canals. Volkmann canals 

are about 0.5 mm in length with an average diameter of 5 microns. The aspect ratio, the ratio of 

length to diameter, of the Haversian and Volkmann canals are both equal to 100 and, they have 

the same filling factor of 2%. Since the canals contain capillaries and nerve tissues which both 

are much more conductive than the bone matrix, the canals can be approximated to be metallic. 

The provided information allows the start of the formation of an accurate model. 

 Before current can be modeled the bone must first be simplified even further so that 

electrodynamic techniques can be properly used. Since Casas and Sevostianovs’ paper, 

Electrical resistivity of cortical bone: Micromechanical modeling and experimental 

verification, was used as a reference when constructing the model, their bone model as well as 

an alternative bone model will be described along with the benefits and pitfalls of each model. In 

Casas and Sevostianovs’ paper they made three assumptions; one assumption was that the 

total conductivity of the bone matrix was σ, independent of direction, another assumption was 

that no canals had any interactions with each other and therefore no canals intersected and the 

last assumption, was that each canal was viewed as an elongated ellipsoid. Casas and 

Sevostianov then, using well know electrodynamic equations, calculated the contribution of 

conductivity of one Haversian canal, using the fill factor and averaging techniques, calculated 

the average contributions to conductivity of all the Haversian canals. They used a similar 

technique and found the contribution to conductivity of all the Volkmann canals and then 

summed the three contributions (bone matrix, Haversian canals, and Volkmann canals) together 

to equate the total conductivity. 

The model becomes simple and straightforward so finding parameters becomes almost 

trivial which makes the model as one of the most attractive choices however there is a flaw in 

the assumptions. One of the assumptions was the the canals have no interactions with one 

another however if there are no intersections of canals, specifically Volkmann and Haversian 

canals, then biologically the bone in study would be dead and no longer heal. This implies that 

any answer derived from the model may have substantial error in it. Therefore, in order for the 

model to be accurate it must account for at least some interaction between the Volkmann and 

Haversian canals. 

An alternative view of the bone is conductive ellipsoids inside a semi-conductive matrix. 

In this model the canals are also viewed as elongated ellipsoids however, instead of viewing the 

canals as separate, the Volkmann canals will be part of the matrix, giving it a uniform 

conductivity perpendicular to the Haversian canals. The rationale involves using the fill factor of 

the canals. Since the canals have the same fill factor but differ in size by a large magnitude, this 

implies that there is a significantly higher quantity of Volkmann canals then there are Haversian 

canals. Due to this significant difference in amounts of the canals and the large difference of 

conductivity between canals and the bone matrix, it can be approximated that the Volkmann 



canal and the bone matrix can be viewed as a homogenized substance with a new conductivity, 

φ, that points along the axis perpendicular to the Haversian canals. For this approximation it 

must be assumed that the number of of Volkmann canals are roughly uniform within their plane. 

This assumption isn’t drastically far fetched since there is no biological reasoning against it. 

After the homogenization, the bone can be viewed as a set of conductive ellipsoids inside a 

lesser conductive matrix whose direction of conductivity is perpendicular to the ellipsoids. This 

model better accounts for the interaction between the two canals and is still relatively simple 

since the electrodynamic equations for the system are well known. 

However no matter which bone model is used there is still the issue of dealing with 

charge flowing in different directions due to the anisotropic nature of the bone. Unlike a metallic 

rod where the current will flow in a unidirectional fashion, when current travels along a bone it 

will branch out and go in different directions making it more complicated to track all of the 

current and every flow. Another technique must be introduced so that the problem can become 

manageable.          

 

Explanation of Tensors 

 

 As previously discussed, bones are anisotropic, meaning that the conductivity of the 

bone may differ dependent on the direction considered. This creates a problem in modeling the 

electrical conductivity of the bones. To deal with this problem, the mathematical concept of 

tensors is introduced. Tensors, in a basic definition, are multidimensional arrays that describe 

some physical property. In our case, tensors will help us to describe the electrical conductivity of 

the bone in any direction. The rank or order of the tensor describes the dimensions of the array 

itself and is dependent upon the number of indices needed to describe the array. In general, a 

rank zero tensor is a scalar, a rank one tensor is a vector, and a rank two tensor is a matrix. 

One important feature of a tensor is that when using a tensor in a mathematical expression, the 

result should remain the same no matter the space that the tensor is used in.  

There are three types of tensors that describe this, contravariant, covariant, and mixed 

tensors. Contravariant tensors describe the change in a displacement vector from one 

coordinate space to another. For example; 

 

 
Describes a transformation from the coordinate system σ to the μ	coordinate system by 

describing the change of the two coordinate basis vectors in μ	with respect to the two coordinate 

basis vectors in σ. In this example, this describes a rank one contravariant tensor, which is 

denoted by the index labeled as a superscript. This definition uses the Einstein summation 

convention, which states that anytime a product between two objects contains the same index 

as a subscript on one term and a superscript on another, (or in this case in the numerator of one 

term and the denominator of another) it is implied that the product is summed over all possible 

values of the index. For example; 



 
 

 Similarly, a covariant tensor describes the transformation of a gradient vector from one 

coordinate space to another and is described mathematically as; 

 

 
 

This describes a rank one covariant tensor, or covector, that describes the change of a gradient 

vector in coordinate space j to the coordinate space i. A covariant tensor is described by the 

index placed as a subscript. A mixed tensor is a tensor that has indices as both a subscript and 

superscript. Therefore, the smallest rank that a mixed tensor can have is a rank of two. The 

usefulness of tensors can be seen in this one property in that we can describe some physical 

property in a coordinate space that is more intuitive and then transform it to a space that has 

more physical meaning. For example, when describing the flux of water through a cylinder, a 

good approach may be to describe the flux out of the cylinder in cylindrical coordinates where 

computation will be simpler and then transform the result into cartesian coordinates. The 

primary tensors used in the model in the paper by R. Casas and I. Sevostianov are the 

resistivity contribution tensor, R and the conductivity contribution tensor, K, which is further 

described with respect to Eshelby’s tensor sc. 

 

Model on the Conductivity of Bone 

 

The model created by R. Casas and I. Sevostianov first uses Maxwell’s equations to 

derive the dual equations used to represent the divergence of the electric field, and the electric 

current density. Because the bone is dielectric, the volume of the bone is inversely proportional 

to the electric field, and is also inversely proportional to the electric field gradient. However, one 

must account for the highly conductive Haversian and Volkmann canals whose volumes are 

proportional to the electric field; 

 
Naturally, the above considerations also apply to the equation for the electric field gradient when 

expressed in its alternate form; 

 
Due to the anisotropic nature of the bone, one cannot model the resistivity and conductivity of 

the bone in a unidirectional fashion. As such, one must use a resistivity contribution tensor, R, 

for the inhomogeneity, and a conductivity tensor, K, for the inhomogeneity (both of rank-2). 

Resistivity and conductivity are inverses of one another, and the conductivity tensor K is simply 

the inverse tensor of the resistivity tensor R. For ease in modelling, one can approximate the 

Haversian and Volkmann canals as ellipsoidal in shape. This allows one to use Eshelby’s 



results for an inhomogeneity of ellipsoidal shape to model the conductivity of the bone, where 

the conductivity of the matrix material (k0), the conductivity of the inhomogeneity (k1), and 

Eshelby’s tensor are all considered; 

 
In the case of the bone, the conductivity of the Haversian and Volkmann canals is much greater 

than that of the bone material so k1 in the model is much greater than k0. For relatively large 

values of k1, we can approximate by taking the limit as k1 goes to infinity, which is as follows; 

                
Since the K-tensor is proportional to the inverse of the Eshelby tensor for an inhomogeneity, this 

tensor must be expressed in useful terms. In the case of a spheroidal inhomogeneity with a 

certain aspect ratio,γ, relevant results were provided by Carlslaw & Jaeger. n is the unit vector 

with respect to the spherical axis of symmetry (which in this case is the minor axis). f0 

represents the aforementioned spherical axis of symmetry. 

 
f0 is itself an expression wherein shape factor g of the spheroid is considered and taken into 

account; 

 
When the aspect ratio is > 1, a prolate spheroid is being described, and when it is < 1 it is an 

oblate spheroid. These two cases are considered below; 

 
As the paper approximates the canals to be prolate spheroids with a very large aspect ratio >>> 

1, one can approximate the value of g by taking the limit as γgoes to infinity. Since the growth in 

the denominator expression greatly outstrips the growth in the numerator, this term goes to 

zero. Using this value of g, one can then approximate f0 by plugging in the g that is acquired, 

and then taking the limit as γ goes to infinity. This value, in turn, can then be plugged into the 

Eshelby tensor, resulting in the following expression; 

                       
Applying dimensionless analysis, the paper arrives at the following expression of the K-tensor 

with dimensionless factors A1 and A2 where A1 is proportional to the conductivity of the matrix 

material and A2 is proportional to the conductivity of the inhomogeneity: 

 

 



Since A1 and A2 are expressed in terms of f0, k0, and k1, they can be reduced further as k0 <<< k1. The 

behavior of A1 and A2 given an aspect ratio is shown in the graph below: 

 

 
 

 

 

Future Work 

 

 The model presented by R. Casas and I. Sevostianov gives a clear model on the overall 

conductivity of a cortical bone. However, as previously stated, one of the biggest assumptions 

made in this model is that there is no interaction between both the Haversian and the Volkmann 

canals. This assumption allows for simplification in the creation of the model but then dismisses 

the idea that the bone therefore cannot receive nutrients that would be transferred between the 

canals, rendering the bone inactive. The model that we will present will consider the interaction 

between the two canals in addition to the effect that the Haversian canals will have on the 

electric field applied to the bone.  
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